Spike-and-wave discharge mediated reduction in hippocampal HCN1 channel function associates with learning deficits in a genetic mouse model of epilepsy.

نویسندگان

  • A Marie Phillips
  • Taehwan Kim
  • Ernesto Vargas
  • Steven Petrou
  • Christopher A Reid
چکیده

The GABAAγ2(R43Q) mouse is an established model of absence epilepsy displaying spontaneous spike-and-wave discharges (SWD) and associated behavioral arrest. Absence epilepsy typically results from cortico-thalamic networks. Nevertheless, there is increasing evidence for changes in hippocampal metabolism and electrical behavior, consistent with a link between absence seizures and hippocampus-related co-morbidities. Hyperpolarization-activated-cyclic-nucleotide-gated (HCN) channels are known to be transcriptionally regulated in a number of seizure models. Here we investigate the expression and function of these channels in the hippocampus of the genetic epilepsy model. A reduction in HCN1, but not HCN2 transcript, was observed in GABAAγ2(R43Q) mice relative to their littermate controls. In contrast, no change in HCN1 transcript was noted at an age prior to seizure expression or in a SWD-free model in which the R43Q mutation has been crossed into a seizure-resistant genetic background. Whole-cell recordings from CA1 pyramidal neurons confirm a reduction in Ih in the GABAAγ2(R43Q) mouse. Further, a left-shift in half-activation of the Ih conductance-voltage relationship is consistent with a reduction in HCN1 with no change in HCN2 channel expression. Behavioral analysis using the Morris water maze indicates that GABAAγ2(R43Q) mice are unable to learn as effectively as their wildtype littermates suggesting a deficit in hippocampal-based learning. SWD-free mice harboring the R43Q mutation had no learning deficit. We conclude that SWDs reduce hippocampal HCN1 expression and function, and that the reduction associates with a spatial learning deficit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus.

Epilepsy is associated with loss of expression and function of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels. Previously, we showed that loss of HCN channel-mediated current (I(h)) occurred in the dendrites of CA1 hippocampal pyramidal neurons after pilocarpine-induced status epilepticus (SE), accompanied by loss of HCN1 channel protein expression. However, the precise...

متن کامل

Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process

Objective(s): Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippoca...

متن کامل

Developmental Analysis of Hippocampal Mossy Fiber Mutant Mouse with Inherited Spike-Wave Seizures Outgrowth in a

Neural firing patterns are an essential determinant of normal axon terminal growth and synaptic connectivity in developing afferent pathways, but the trophic role of synchronous activity in associative neural networks is less well defined. We examined the ontogeny of inherited synchronous hippocampal network discharges and mossy fiber innervation patterns at sequential stages of development in ...

متن کامل

P 145: A Review of Animal Models of Absence Epilepsy

The most common type of childhood-onset epilepsy syndrome is childhood absence epilepsy (CAE) with well-defined electro clinical features but unknown pathological basis. The incidence of absence epilepsy is about 2 and 8 out of every 100 000 children up to the age of 16, and the prevalence is 2 and 10% of children with any form of epilepsy. Children with CAE suffer from high rate of pretreatmen...

متن کامل

Chemical kindling enhances the Schaffer collateral-CAl pyramidal cell synaptic transmission in anesthetized rats

Epilepsy is one of the common disorders in human community. Clinical observations have shown that epileptic patients have often difficulty in learning and memory. Kindling is a laboratory model for studying epilepsy and its complications. This experiment was designed to study the effect of chemical kindling on Schaffer collateral-CA1 pyramidal cell synaptic transmission using pentylenetetrazole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of disease

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2014